metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aqua(benzamidato- κN)bis[3,5-difluoro-2-(pyridin-2-yl)phenyl- κC^{1}]iridium(III) methanol monosolvate

Songlin Zhang, Feng Wu and Yugiang Ding*

School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China Correspondence e-mail: yding@jiangnan.edu.cn

Received 21 November 2011; accepted 10 February 2012

Key indicators: single-crystal X-ray study; T = 223 K; mean $\sigma(C-C) = 0.013$ Å; Hatom completeness 84%; disorder in main residue; R factor = 0.045; wR factor = 0.101; data-to-parameter ratio = 15.6.

In the title compound, $[Ir(C_{11}H_6F_2N)_2(C_7H_6NO)(H_2O)]$. CH₃OH, the Ir^{III} ion adopts an octahedral geometry, and is coordinated by two 3,5-difluoro-2-(pyridin-2-yl)phenyl ligands, one molecule of water and one benzamidate anion. The two 2-(4,6-difluorophenyl)pyridyl ligands are arranged in a cis-C,C' and trans-N,N' fashion. Additionally, there is a bystanding methanol molecule outside the coordination sphere of the Ir^{III} ion. In the crystal, molecules of the title compound are linked by $O-H \cdots O$ and $O-H \cdots N$ hydrogen bonds. One F atom of each ligand is equally disordered over two sites. The C atom of the solvent molecule is likewise disordered over two sites in a 0.589 (11):0.411 (11) ratio.

Related literature

For related cyclometallated Ir^{III} complexes containing a κ^2 bound benzaminate anion, see: Yang et al. (2011); Wang et al. (2008): Zhang et al. (2011). For the coordination geometry of some homoleptic meridional and heteroleptic iridium(III) complexes, see: Tamayo et al. (2003); Yang et al. (2007); You & Park (2005); Zhang et al. (2011). For the general procedure of preparing a chloride-bridged Ir^{III} dimer, see: Nonoyama (1974).

Experimental

Crystal data

λ Ν

а h

с

$[Ir(C_{11}H_6F_2N)_2(C_7H_6NO)-$	$\beta = 129.391 \ (2)^{\circ}$
$(H_2O)]\cdot CH_4O$	V = 5374.5 (12) Å ³
$M_r = 742.74$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 29.544 (4) Å	$\mu = 5.04 \text{ mm}^{-1}$
b = 11.6258 (12) Å	T = 223 K
c = 20.247 (3) Å	$0.34 \times 0.25 \times 0.24$ mm

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{\min} = 0.279, T_{\max} = 0.378$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.101$	independent and constrained
S = 1.09	refinement
6122 reflections	$\Delta \rho_{\rm max} = 1.20 \text{ e } \text{\AA}^{-3}$
392 parameters	$\Delta \rho_{\rm min} = -1.18 \text{ e } \text{\AA}^{-3}$
4 restraints	

14977 measured reflections

 $R_{\rm int} = 0.031$

6122 independent reflections

5277 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(A,	°).
---------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D2 - H2B \cdots N3$ $D2 - H2B \cdots O1$ $D2 - H2A \cdots N1$ $D2 - H2A \cdots O1^{i}$	$\begin{array}{c} 0.85 \ (1) \\ 0.85 \ (1) \\ 0.85 \ (1) \\ 0.85 \ (1) \\ 0.85 \ (1) \end{array}$	2.54 (6) 1.74 (3) 2.45 (6) 1.97 (4)	3.029 (7) 2.560 (6) 2.960 (6) 2.700 (7)	117 (6) 161 (7) 119 (6) 142 (6)

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$.

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (NNSFC grant No. 20971058) and the Fundamental Research Funds for the Central Universities (grant No. JUSRP 11105) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2185).

References

- Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.
- Nonoyama, M. (1974). Bull. Chem. Soc. Jpn, 47, 767-768.
- Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S. L., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377-7387.
- Wang, W., Zhu, T., Chen, G., Li, C., Di, H., Ren, C. & Ding, Y. (2008). Synth. Met. 158, 1022-1027.
- Yang, C. H., Cheng, Y. M., Chi, Y., Hsu, C. J., Fang, F. C., Wong, K. T., Chou, P. T., Chang, C. H., Tsai, M. H. & Wu, C. C. (2007). Angew. Chem. Int. Ed. 46, 2418-2421.
- Yang, W., Fu, H., Song, Q., Zhang, M. & Ding, Y. (2011). Organometallics, 30, 77-83.
- You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438-12439.
- Zhang, S., Wu, F., Yang, W. & Ding, Y. (2011). Inorg. Chem. Commun. 14, 1414-1417.

supplementary materials

Acta Cryst. (2012). E68, m310 [doi:10.1107/S1600536812005922]

Aqua(benzamidato- κN)bis[3,5-difluoro-2-(pyridin-2-yl)phenyl- κC^1]iridium(III) methanol monosolvate

Songlin Zhang, Feng Wu and Yuqiang Ding

Comment

The title compound was obtained unexpectedly during our study on the preparation of bis(2-(4,6-difluorophenyl)pyridyl)iridium(III) κ^2 -benzamidate complex. Ancillary κ^2 -amidate ligands have been shown to have a great influence on the photophysical and electrochemical properties of cyclometalated Ir(III) complexes (Yang et al., 2011; Wang et al., 2008). We have synthesized several such bis(2-(4,6-difluorophenyl)pyridyl)iridium(III) κ^2 -amidate complexes, in all of which, there is a substitutent on the amide nitrogen atom (Zhang et al., 2011). When benzamide lacking a substituent on the amide nitrogen atom was subjected to the reaction condition for the preparation of Ir(III) κ^2 -amidate complexes, an unexpected Ir(III) complex with a N-bound benzamidate ligand and an O-bound water ligand, *i.e.*, the title compound, was obtained. As shown in Fig. 1, the iridium center adopts an octahedral geometry. The two 2-(4,6-difluorophenyl)pyridyl ligands are arranged in a cis-C, C' and trans-N, N' fashion, which have already been observed in some homoleptic meridional iridium(III) complexes (Tamavo et al., 2003) and also some heteroleptic iridium(III) complexes (Yang et al., 2007; You & Park, 2005; Zhang et al., 2011). The remaining two coordination sites were occupied by benzamidate nitrogen atom and water oxygen atom, respectively. The methanol molecule outside the coordination sphere of the Ir center should result from the deprotonation of the benzamide ligand by the intermediate Ir-OMe complex, which is generated by reaction of chloro-bridged Ir(III) dimer with sodium methoxide. However, there is still some uncertainties about the nature of the bystanding solvent molecule or how it is arranged. In the crystal, there should be intermolecular hydrogen bonds, such as O-H-O and N-H-O, as shown by Fig. 2.

Experimental

Into a Schlenk tube containing chloro-bridged bis(2-(4,6-difluorophenyl)pyridyl) Ir(III) dimer (1 eq.), benzamide (2.5 eq.) and sodium methoxide (10 eq.) was added dichloromethane solvent under dinitrogen. The chloro-bridged Ir(III) dimer was obtained by reaction of $IrCl_3 3H_2O$ with 2-(4,6-difluorophenyl)pyridine ligand in ethoxyethanol solvent under dinitrogen atmosphere according to the general procedure reported by Nonoyama (1974). The mixture was stirred for 48 h at room temperature, resulting in the formation of an orange solution. The CH_2Cl_2 solvent in the crude product mixture was then evaporated and the residue was then washed by dried ether. The crystal of the title compound was obtained by recrystallization of the solid in CH_2Cl_2 /cyclohexane mixed solvent.

Refinement

Hydrogen atoms bound to carbon atoms were positioned geometrically with C—H = 0.93 Å or 0.96 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). Hydrogen atoms bound to nitrogen and oxygen atoms were located in difference maps and refined subject to a restraint of N—H = 0.87 (2) Å and O—H = 0.85 (2) Å respectively. The methanol molecule in the crystal should come from the deprotonation of benzamide ligand by intermediate Ir(III)-

OMe complex, which is supposed to be generated by transmetalation of chloro-bridged Ir(III) dimer with added sodium methoxide. Due to the disorder of the methanol molecule, the positions of hydrogen atoms on methanol are difficult to determine. Furthermore, this would lead to some disorder in the positions of fluorine atoms on the phenyl ring because there should be some interaction between the methanol hydrogen atoms with the fluorine atoms. This is believed to be the most probable structure of the title compound.

Computing details

Data collection: *CrystalClear* (Rigaku, 2007); cell refinement: *CrystalClear* (Rigaku, 2007); data reduction: *CrystalClear* (Rigaku, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular drawing of the title compound at 30% probability level. Hydrogen atoms are omitted for clarity. There are some disorder for the two fluorine atoms bound to C9 and C18 of phenyl rings.

Figure 2

Hydrogen bonding.

Aqua(benzamidato-κN)bis[3,5-difluoro-2-(pyridin-2-yl)phenyl- κC¹]iridium(III) methanol monosolvate

Crystal data

 $[Ir(C_{11}H_6F_2N)_2(C_7H_6NO)(H_2O)] \cdot CH_4O$ $M_r = 742.74$ Monoclinic, C2/cHall symbol: -C 2yc a = 29.544 (4) Å b = 11.6258 (12) Å c = 20.247 (3) Å $\beta = 129.391$ (2)° V = 5374.5 (12) Å³ Z = 8

Data collection

Rigaku Saturn diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 14.63 pixels mm⁻¹ ω scans Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{\min} = 0.279, T_{\max} = 0.378$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.101$ S = 1.096122 reflections 392 parameters F(000) = 2960 $D_x = 1.846 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 11541 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 5.04 \text{ mm}^{-1}$ T = 223 KBlock, yellow $0.34 \times 0.25 \times 0.24 \text{ mm}$

14977 measured reflections 6122 independent reflections 5277 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -38 \rightarrow 30$ $k = -15 \rightarrow 12$ $l = -21 \rightarrow 26$

4 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.002$
and constrained refinement	$\Delta \rho_{\rm max} = 1.20 \text{ e} \text{ Å}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0407P)^2 + 26.4741P]$	$\Delta \rho_{\rm min} = -1.18 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ir1	0.347048 (9)	0.650175 (18)	-0.014534 (14)	0.03168 (9)	
F1	0.4503 (2)	1.0543 (4)	0.0772 (3)	0.0836 (15)	
F2	0.3963 (8)	0.9191 (12)	-0.1797 (9)	0.054 (4)	0.50
F2A	0.4011 (16)	0.913 (3)	-0.175 (2)	0.170 (12)	0.50
F3	0.438 (3)	0.306 (5)	-0.067 (4)	0.073 (8)	0.50
F3A	0.451 (3)	0.326 (5)	-0.049 (4)	0.089 (12)	0.50
F4	0.5660 (2)	0.4827 (5)	0.2118 (4)	0.0969 (18)	
O1	0.22923 (18)	0.5920 (4)	-0.0254 (3)	0.0452 (11)	
O2	0.26439 (19)	0.7445 (4)	-0.0750 (3)	0.0416 (10)	
H2A	0.279 (3)	0.774 (6)	-0.027 (2)	0.050*	
H2B	0.249 (3)	0.688 (4)	-0.070 (5)	0.050*	
N1	0.3828 (2)	0.7418 (4)	0.0941 (3)	0.0371 (11)	
N2	0.3159 (2)	0.5635 (4)	-0.1235 (3)	0.0385 (11)	
N3	0.3141 (2)	0.5160 (4)	0.0160 (3)	0.0368 (11)	
H3	0.3352	0.4537	0.0359	0.044*	
C1	0.3830 (3)	0.7075 (6)	0.1581 (4)	0.0487 (16)	
H1	0.3678	0.6348	0.1550	0.058*	
C2	0.4049 (3)	0.7770 (8)	0.2280 (5)	0.063 (2)	
H2	0.4051	0.7507	0.2720	0.076*	
C3	0.4262 (3)	0.8823 (8)	0.2333 (5)	0.063 (2)	
H3A	0.4402	0.9305	0.2801	0.075*	
C4	0.4271 (3)	0.9189 (6)	0.1684 (4)	0.0505 (17)	
H4	0.4421	0.9918	0.1713	0.061*	
C5	0.4058 (3)	0.8471 (5)	0.1000 (4)	0.0402 (14)	
C6	0.4042 (3)	0.8707 (5)	0.0273 (4)	0.0382 (13)	
C7	0.4257 (3)	0.9693 (6)	0.0165 (4)	0.0493 (16)	
C8	0.4244 (3)	0.9879 (6)	-0.0520 (5)	0.0551 (18)	
H8	0.4395	1.0551	-0.0575	0.066*	
C9	0.3994 (3)	0.9010 (7)	-0.1115 (5)	0.0535 (18)	
C10	0.3775 (3)	0.8013 (6)	-0.1057 (4)	0.0411 (14)	
H10	0.3616	0.7445	-0.1482	0.049*	
C11	0.3791 (2)	0.7851 (5)	-0.0359 (4)	0.0331 (12)	
C12	0.2627 (3)	0.5836 (6)	-0.1998 (4)	0.0524 (17)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

		0.6402	0.0004	0.0.00	
H12	0.2385	0.6403	-0.2034	0.063*	
C13	0.2430 (4)	0.5236 (7)	-0.2718 (5)	0.070 (2)	
H13	0.2058	0.5387	-0.3242	0.084*	
C14	0.2788 (5)	0.4403 (8)	-0.2660 (6)	0.078 (3)	
H14	0.2661	0.3972	-0.3143	0.093*	
C15	0.3329 (4)	0.4215 (7)	-0.1894 (6)	0.069 (2)	
H15	0.3578	0.3667	-0.1856	0.083*	
C16	0.3516 (3)	0.4824 (6)	-0.1166 (5)	0.0498 (17)	
C17	0.4074 (3)	0.4732 (6)	-0.0308 (5)	0.0468 (16)	
C18	0.4528 (4)	0.3966 (7)	-0.0035 (6)	0.063 (2)	
C19	0.5056 (4)	0.3973 (7)	0.0764 (7)	0.072 (3)	
H19	0.5354	0.3450	0.0929	0.086*	
C20	0.5129 (3)	0.4784 (7)	0.1314 (6)	0.065 (2)	
C21	0.4706 (3)	0.5553 (6)	0.1116 (5)	0.0520 (17)	
H21	0.4780	0.6080	0.1527	0.062*	
C22	0.4169 (3)	0.5537 (5)	0.0303 (4)	0.0408 (14)	
C23	0.2672 (2)	0.5124 (5)	0.0096 (4)	0.0353 (13)	
C24	0.2570 (3)	0.4127 (5)	0.0461 (4)	0.0359 (13)	
C25	0.2003 (3)	0.3869 (6)	0.0129 (5)	0.0505 (16)	
H25	0.1690	0.4317	-0.0319	0.061*	
C26	0.1894 (4)	0.2950 (7)	0.0454 (6)	0.065 (2)	
H26	0.1507	0.2774	0.0221	0.078*	
C27	0.2346 (4)	0.2312 (7)	0.1105 (6)	0.063 (2)	
H27	0.2271	0.1691	0.1321	0.076*	
C28	0.2916 (4)	0.2567 (7)	0.1455 (5)	0.062 (2)	
H28	0.3227	0.2124	0.1908	0.075*	
C29	0.3025 (3)	0.3481 (6)	0.1133 (5)	0.0506 (17)	
H29	0.3413	0.3661	0.1376	0.061*	
O3	0.44588 (19)	0.2099 (4)	0.2396 (3)	0.0543 (12)	
C30	0.4370 (5)	0.2603 (9)	0.1702 (7)	0.0543 (12)	0.589 (11)
C30A	0.4817 (6)	0.2785 (10)	0.2269 (12)	0.0543 (12)	0.411 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	0.03266 (13)	0.03359 (13)	0.03432 (13)	0.00037 (10)	0.02386 (11)	0.00088 (10)
F1	0.097 (4)	0.068 (3)	0.087 (3)	-0.037 (3)	0.059 (3)	-0.021 (3)
F2	0.087 (10)	0.054 (6)	0.046 (6)	-0.033 (7)	0.054 (7)	-0.011 (5)
F2A	0.18 (3)	0.22 (3)	0.18 (2)	-0.02 (2)	0.15 (2)	0.03 (2)
F3	0.10(2)	0.048 (10)	0.11 (2)	-0.003 (11)	0.09 (2)	-0.026 (12)
F3A	0.10(2)	0.07 (2)	0.11 (2)	0.010 (16)	0.07 (2)	-0.021 (15)
F4	0.047 (3)	0.089 (4)	0.114 (4)	0.020 (3)	0.032 (3)	0.024 (3)
01	0.038 (2)	0.042 (2)	0.063 (3)	0.004 (2)	0.035 (2)	0.006 (2)
O2	0.037 (2)	0.046 (3)	0.047 (2)	0.004 (2)	0.029 (2)	0.009 (2)
N1	0.033 (3)	0.044 (3)	0.034 (3)	0.002 (2)	0.021 (2)	-0.001 (2)
N2	0.045 (3)	0.039 (3)	0.043 (3)	-0.009 (2)	0.033 (3)	-0.001 (2)
N3	0.039 (3)	0.035 (3)	0.043 (3)	0.002 (2)	0.029 (2)	0.003 (2)
C1	0.053 (4)	0.059 (4)	0.040 (3)	-0.005 (3)	0.033 (3)	-0.002 (3)
C2	0.061 (5)	0.081 (6)	0.051 (4)	-0.013 (4)	0.037 (4)	-0.018 (4)

C3	0.051 (4)	0.089 (6)	0.046 (4)	-0.005 (4)	0.031 (4)	-0.023 (4)
C4	0.044 (4)	0.050 (4)	0.056 (4)	-0.007(3)	0.031 (3)	-0.013 (3)
C5	0.030 (3)	0.045 (3)	0.040 (3)	0.005 (3)	0.020(3)	-0.002(3)
C6	0.033 (3)	0.039 (3)	0.039 (3)	0.002 (3)	0.021 (3)	-0.001 (3)
C7	0.040 (3)	0.046 (4)	0.054 (4)	-0.013 (3)	0.026 (3)	-0.010 (3)
C8	0.051 (4)	0.052 (4)	0.068 (5)	-0.011 (3)	0.040 (4)	0.002 (4)
C9	0.061 (4)	0.060 (4)	0.056 (4)	-0.010 (4)	0.045 (4)	0.005 (4)
C10	0.046 (4)	0.045 (3)	0.045 (3)	-0.003 (3)	0.035 (3)	0.004 (3)
C11	0.027 (3)	0.036 (3)	0.038 (3)	0.005 (2)	0.022 (3)	0.005 (3)
C12	0.057 (4)	0.055 (4)	0.043 (4)	-0.014 (4)	0.031 (4)	-0.003 (3)
C13	0.093 (6)	0.065 (5)	0.045 (4)	-0.033 (5)	0.041 (5)	-0.011 (4)
C14	0.121 (8)	0.071 (6)	0.065 (5)	-0.043 (6)	0.070 (6)	-0.036 (5)
C15	0.106 (7)	0.061 (5)	0.084 (6)	-0.014 (5)	0.082 (6)	-0.017 (5)
C16	0.072 (5)	0.042 (4)	0.068 (5)	-0.010 (3)	0.059 (4)	-0.007 (3)
C17	0.051 (4)	0.047 (4)	0.070 (4)	0.002 (3)	0.051 (4)	0.002 (3)
C18	0.081 (6)	0.045 (4)	0.108 (7)	0.003 (4)	0.081 (6)	-0.003 (5)
C19	0.057 (5)	0.058 (5)	0.113 (8)	0.023 (4)	0.060 (6)	0.024 (5)
C20	0.040 (4)	0.059 (5)	0.081 (6)	0.009 (4)	0.032 (4)	0.021 (4)
C21	0.040 (4)	0.050 (4)	0.065 (4)	-0.001 (3)	0.033 (4)	0.003 (4)
C22	0.040 (3)	0.037 (3)	0.062 (4)	0.000 (3)	0.040 (3)	0.005 (3)
C23	0.035 (3)	0.037 (3)	0.036 (3)	-0.007 (3)	0.024 (3)	-0.008 (3)
C24	0.047 (3)	0.032 (3)	0.041 (3)	-0.005 (3)	0.034 (3)	-0.003 (3)
C25	0.051 (4)	0.052 (4)	0.056 (4)	-0.007 (3)	0.037 (4)	-0.004 (3)
C26	0.090 (6)	0.051 (4)	0.091 (6)	-0.026 (5)	0.075 (6)	-0.017 (5)
C27	0.104 (7)	0.044 (4)	0.077 (5)	-0.013 (4)	0.073 (6)	-0.002 (4)
C28	0.087 (6)	0.057 (4)	0.057 (4)	0.007 (4)	0.053 (5)	0.013 (4)
C29	0.057 (4)	0.052 (4)	0.050 (4)	0.002 (3)	0.038 (4)	0.005 (3)
O3	0.036 (2)	0.031 (2)	0.092 (3)	0.0002 (17)	0.038 (2)	-0.017 (2)
C30	0.036 (2)	0.031 (2)	0.092 (3)	0.0002 (17)	0.038 (2)	-0.017 (2)
C30A	0.036 (2)	0.031 (2)	0.092 (3)	0.0002 (17)	0.038 (2)	-0.017 (2)

Geometric parameters (Å, °)

Ir1—C22	1.991 (6)	C9—C10	1.367 (9)
Ir1—C11	2.016 (6)	C10—C11	1.397 (8)
Ir1—N1	2.035 (5)	C10—H10	0.9400
Ir1—N2	2.038 (5)	C12—C13	1.370 (10)
Ir1—N3	2.127 (5)	C12—H12	0.9400
Ir1—O2	2.207 (4)	C13—C14	1.383 (13)
F1—C7	1.371 (8)	C13—H13	0.9400
F2—C9	1.340 (15)	C14—C15	1.364 (13)
F2AC9	1.33 (3)	C14—H14	0.9400
F3—C18	1.49 (4)	C15—C16	1.395 (10)
F3A-C18	1.21 (5)	C15—H15	0.9400
F4—C20	1.368 (9)	C16—C17	1.454 (10)
O1—C23	1.268 (7)	C17—C18	1.398 (10)
O2—H2A	0.854 (10)	C17—C22	1.429 (9)
O2—H2B	0.849 (10)	C18—C19	1.360 (12)
N1-C1	1.353 (8)	C19—C20	1.368 (12)
N1—C5	1.368 (8)	C19—H19	0.9400

N2—C12	1.353 (8)	C20—C21	1.374 (10)
N2—C16	1.353 (8)	C21—C22	1.383 (9)
N3—C23	1.309 (7)	C21—H21	0.9400
N3—H3	0.8700	C23—C24	1.504 (8)
C1—C2	1.382 (10)	C24—C29	1.379 (9)
C1—H1	0.9400	C24—C25	1.384 (9)
C2—C3	1.350 (12)	C25—C26	1.397 (10)
С2—Н2	0.9400	С25—Н25	0.9400
C3—C4	1.397 (10)	C26—C27	1.356 (12)
С3—НЗА	0.9400	С26—Н26	0.9400
C4—C5	1.380 (9)	C27—C28	1.382 (11)
C4—H4	0.9400	С27—Н27	0.9400
C5—C6	1.470 (9)	C28—C29	1.388 (10)
C6—C7	1.392 (9)	C28—H28	0.9400
C6—C11	1.404 (8)	С29—Н29	0.9400
C7—C8	1.379 (10)	O3—C30	1.387 (9)
C8—C9	1.374 (10)	O3—C30A	1.472 (9)
C8—H8	0.9400		
C22—Ir1—C11	92.5 (2)	C10—C11—Ir1	127.1 (5)
C22—Ir1—N1	97.2 (2)	C6-C11-Ir1	113.8 (4)
C11—Ir1—N1	80.3 (2)	N2—C12—C13	121.9 (8)
C22—Ir1—N2	80.8 (2)	N2—C12—H12	119.1
C11—Ir1—N2	95.9 (2)	C13—C12—H12	119.1
N1—Ir1—N2	175.72 (19)	C12—C13—C14	118.7 (8)
C22—Ir1—N3	89.3 (2)	С12—С13—Н13	120.6
C11—Ir1—N3	175.3 (2)	С14—С13—Н13	120.6
N1—Ir1—N3	95.12 (19)	C_{15} C_{14} C_{13}	119.4 (7)
N2—Ir1—N3	88.66 (18)	C15—C14—H14	120.3
$C_2 = Ir_1 = O_2$	174.2 (2)	C13—C14—H14	120.3
C_{11} I_{r1} O_{2}	90.00 (19)	C14-C15-C16	120.8 (8)
N1— $Ir1$ — $O2$	88.38 (18)	C14—C15—H15	119.6
N2—Ir1—O2	93.72 (19)	С16—С15—Н15	119.6
N3—Ir1—O2	88.65 (17)	N2—C16—C15	119.0 (7)
Ir1—O2—H2A	90 (5)	N2—C16—C17	113.2 (6)
Ir1—O2—H2B	92 (5)	C15—C16—C17	127.8 (7)
H2A—O2—H2B	95 (7)	C18—C17—C22	117.6 (7)
C1—N1—C5	118.7 (5)	C18—C17—C16	126.5 (7)
C1—N1—Ir1	124.4 (4)	C22—C17—C16	115.9 (6)
C5—N1—Ir1	116.8 (4)	F3A-C18-C19	112 (3)
C12—N2—C16	120.2 (6)	F3A-C18-C17	124 (3)
C12—N2—Ir1	123.3 (5)	C19—C18—C17	123.7 (8)
C16—N2—Ir1	116.5 (4)	F3A-C18-F3	11 (5)
C23—N3—Ir1	130.2 (4)	C19—C18—F3	121 (3)
C23—N3—H3	114.9	C17—C18—F3	115 (3)
Ir1—N3—H3	114.9	C18—C19—C20	116.3 (7)
N1—C1—C2	121.5 (7)	С18—С19—Н19	121.9
N1—C1—H1	119.3	С20—С19—Н19	121.9
C2—C1—H1	119.3	C19—C20—F4	117.6 (7)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C1	120.3 (7)	C19—C20—C21	124.5 (8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С2—Н2	119.9	F4—C20—C21	117.9 (8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—H2	119.9	C20—C21—C22	118.8 (7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	119.2 (7)	C20—C21—H21	120.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—НЗА	120.4	C22—C21—H21	120.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—НЗА	120.4	C21—C22—C17	119.1 (6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C3	119.4 (7)	C21—C22—Ir1	127.5 (5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С4—Н4	120.3	C17—C22—Ir1	113.4 (5)	
N1C5C4120.9 (6)01C23C24117.1 (5)N1C5C6112.4 (5)N3C23C24120.4 (5)C4C5C6126.7 (6)C29C24C25118.9 (6)C7C6C11118.1 (6)C29C24C23122.1 (6)C7C6C5125.6 (6)C25C24C23120.5 (7)F1C7C8116.6 (6)C24C25H25119.8F1C7C6129.2 (6)C26C25H25119.8C8C7C6124.1 (6)C27C26C25119.8 (8)C9C8H8122.5C25C26-H26120.1C9C8H8122.5C25C26-H26120.1C7C8H8122.5C26C27C28120.6 (7)F2AC9F26 (2)C26C27H27119.7F2A-C9C8116.3 (16)C27C28C29119.7 (8)F2A-C9C8115.9 (8)C29C28-H28120.2C10C9C8124.6 (7)C24C29C28120.5 (7)C9C10119.5 (8)C29C28-H28120.2C10C9C8124.6 (7)C24C29C28120.5 (7)C9C10H10120.4C28C29-H29119.7C9C10H10120.4C28C29-H29119.7C11C10H10120.4C30O3C30A44.6 (8)C10C11C6119.0 (5)C30AiC30AO3111 (2)	C3—C4—H4	120.3	O1—C23—N3	122.5 (5)	
$\begin{split} & \text{N1} - \text{C5} - \text{C6} & 112.4 (5) & \text{N3} - \text{C23} - \text{C24} & 120.4 (5) \\ & \text{C4} - \text{C5} - \text{C6} & 126.7 (6) & \text{C29} - \text{C24} - \text{C25} & 118.9 (6) \\ & \text{C7} - \text{C6} - \text{C11} & 118.1 (6) & \text{C29} - \text{C24} - \text{C23} & 122.1 (6) \\ & \text{C7} - \text{C6} - \text{C5} & 125.6 (6) & \text{C25} - \text{C24} - \text{C23} & 119.0 (6) \\ & \text{C11} - \text{C6} - \text{C5} & 116.3 (5) & \text{C24} - \text{C25} - \text{C26} & 120.5 (7) \\ & \text{F1} - \text{C7} - \text{C8} & 116.6 (6) & \text{C24} - \text{C25} - \text{H25} & 119.8 \\ & \text{F1} - \text{C7} - \text{C6} & 119.2 (6) & \text{C26} - \text{C25} - \text{H25} & 119.8 \\ & \text{C8} - \text{C7} - \text{C6} & 124.1 (6) & \text{C27} - \text{C26} - \text{C25} & 119.8 (8) \\ & \text{C9} - \text{C8} - \text{C7} & 115.0 (6) & \text{C27} - \text{C26} - \text{H26} & 120.1 \\ & \text{C9} - \text{C8} - \text{H8} & 122.5 & \text{C25} - \text{C26} - \text{H26} & 120.1 \\ & \text{C7} - \text{C8} - \text{H8} & 122.5 & \text{C26} - \text{C27} - \text{C28} & 120.6 (7) \\ & \text{F2A} - \text{C9} - \text{C10} & 118.9 (16) & \text{C28} - \text{C27} - \text{H27} & 119.7 \\ & \text{F2A} - \text{C9} - \text{C10} & 118.9 (16) & \text{C28} - \text{C27} - \text{H27} & 119.7 \\ & \text{F2A} - \text{C9} - \text{C8} & 116.3 (16) & \text{C27} - \text{C28} - \text{C29} & 119.7 (8) \\ & \text{F2A} - \text{C9} - \text{C8} & 116.3 (16) & \text{C27} - \text{C28} - \text{C29} & 119.7 (8) \\ & \text{F2A} - \text{C9} - \text{C8} & 115.9 (8) & \text{C29} - \text{C28} - \text{H28} & 120.2 \\ & \text{C10} - \text{C9} - \text{C8} & 115.9 (8) & \text{C29} - \text{C28} - \text{H28} & 120.2 \\ & \text{C10} - \text{C9} - \text{C8} & 115.9 (8) & \text{C29} - \text{C28} - \text{H29} & 119.7 \\ & \text{C9} - \text{C10} - \text{H10} & 120.4 & \text{C28} - \text{C29} - \text{H29} & 119.7 \\ & \text{C9} - \text{C10} - \text{H10} & 120.4 & \text{C28} - \text{C29} - \text{H29} & 119.7 \\ & \text{C11} - \text{C10} - \text{H10} & 120.4 & \text{C30} - \text{O3} - \text{C30A} & 44.6 (8) \\ & \text{C10} - \text{C11} - \text{C6} & 119.0 (5) & \text{C30A} - \text{C30} - \text{C30} - \text{C30} - \text{C30} & 111 (2) \\ & \text{C22} - \text{C14} - \text{C14} - \text{C14} - \text{C24} - \text{C30} - \text{C33} & 111 (2) \\ & \text{C22} - \text{C14} - \text{C14} - \text{C14} - \text{C14} - \text{C24} - \text{C26} - \text{C26} - \text{C27} - \text{C28} & 110.7 \\ & \text{C11} - \text{C10} - \text{C11} & 119.0 (5) & \text{C30A} - \text{C33} & 111 (2) \\ & \text{C30} - \text{C30} - \text{C30} - \text{C30} & 111 (2) \\ & \text{C30} - \text{C30} - \text{C30} - \text{C30} & 1111 (2) \\ & \text{C30} - \text{C30} - \text{C30} & 11$	N1—C5—C4	120.9 (6)	O1—C23—C24	117.1 (5)	
C4—C5—C6126.7 (6)C29—C24—C25118.9 (6)C7—C6—C11118.1 (6)C29—C24—C23122.1 (6)C7—C6—C5125.6 (6)C25—C24—C23119.0 (6)C11—C6—C5116.3 (5)C24—C25—C26120.5 (7)F1—C7—C8116.6 (6)C24—C25—H25119.8F1—C7—C6119.2 (6)C26—C25—H25119.8C8—C7—C6124.1 (6)C27—C26—C25119.8 (8)C9—C8—C7115.0 (6)C27—C26—H26120.1C9—C8—H8122.5C25—C26—H26120.1C7—C8—H8122.5C26—C27—C28120.6 (7)F2A—C9—F26 (2)C26—C27—H27119.7F2—C9—C10118.9 (16)C28—C27—H27119.7F2A—C9—C8116.3 (16)C27—C28—H28120.2F2—C9—C8115.9 (8)C29—C28—H28120.2C10—C9—C8124.6 (7)C24—C29—C28120.5 (7)C9—C10—H10120.4C28—C29—H29119.7C11—C10—H10120.4C30—O3—C30A44.6 (8)C10—C11—C6119.0 (5)C30A ¹ —C30A—O3111 (2)	N1—C5—C6	112.4 (5)	N3—C23—C24	120.4 (5)	
C7C6C11118.1 (6)C29C24C23122.1 (6)C7C6C5125.6 (6)C25C24C23119.0 (6)C11C6C5116.3 (5)C24C25C26120.5 (7)F1C7C8116.6 (6)C24C25H25119.8F1C7C6119.2 (6)C26C25H25119.8C8C7C6124.1 (6)C27C26C25119.8 (8)C9C8C7115.0 (6)C27C26H26120.1C9C8H8122.5C26C27C28120.6 (7)F2AC9F26 (2)C26C27H27119.7F2AC9C10118.9 (16)C28C27H27119.7F2AC9C8116.3 (16)C27C28H28120.2F2C9C8115.9 (8)C29C28H28120.2F2C9C8115.9 (8)C29C28H28120.2C10C9C8124.6 (7)C24C29C28120.5 (7)C9C10C11119.1 (6)C24C29H29119.7C9C10H10120.4C28C29H29119.7C11C10H10120.4C30O3C30A44.6 (8)C10C11C6119.0 (5)C30A'C30AO3111 (2)	C4—C5—C6	126.7 (6)	C29—C24—C25	118.9 (6)	
C7C6C5125.6 (6)C25C24C23119.0 (6)C11C6C5116.3 (5)C24C25C26120.5 (7)F1C7C8116.6 (6)C24C25H25119.8F1C7C6119.2 (6)C26C25H25119.8 (8)C8C7C6124.1 (6)C27C26C25119.8 (8)C9C8C7115.0 (6)C27C26H26120.1C7C8H8122.5C26C27C28120.6 (7)F2AC9F26 (2)C26C27H27119.7F2C9C10118.9 (16)C28C27H27119.7F2AC9C8116.3 (16)C27C28H28120.2F2C9C8115.9 (8)C29C28H28120.2F2C9C8115.9 (8)C29C28H28120.2C10C9C8124.6 (7)C24C29C28120.5 (7)C9C10H10120.4C28C29H29119.7C9C10H10120.4C30O3C30A44.6 (8)C10C11C6119.0 (5)C30AC30AO3111 (2)	C7—C6—C11	118.1 (6)	C29—C24—C23	122.1 (6)	
C11—C6—C5116.3 (5)C24—C25—C26120.5 (7)F1—C7—C8116.6 (6)C24—C25—H25119.8F1—C7—C6119.2 (6)C26—C25—H25119.8C8—C7—C6124.1 (6)C27—C26—C25119.8 (8)C9—C8—C7115.0 (6)C27—C26—H26120.1C9—C8—H8122.5C25—C26—H26120.1C7—C8—H8122.5C26—C27—C28120.6 (7)F2A—C9—F26 (2)C26—C27—H27119.7F2A—C9—C10118.9 (16)C28—C27—H27119.7F2—C9—C10119.5 (8)C27—C28—H28120.2F2—C9—C8116.3 (16)C27—C28—H28120.2C10—C9—C8124.6 (7)C24—C29—C28120.5 (7)C9—C10—C11119.1 (6)C24—C29—H29119.7C9—C10—H10120.4C28—C29—H29119.7C11—C10—H10120.4C30—O3—C30A44.6 (8)C10—C11—C6119.0 (5)C30A ¹ —C30A—O3111 (2)	C7—C6—C5	125.6 (6)	C25—C24—C23	119.0 (6)	
F1C7C8116.6 (6)C24C25H25119.8F1C7C6119.2 (6)C26C25H25119.8 (8)C8C7C6124.1 (6)C27C26C25119.8 (8)C9C8C7115.0 (6)C27C26H26120.1C9C8H8122.5C25C26H26120.1C7C8H8122.5C26C27C28120.6 (7)F2AC9F26 (2)C26C27H27119.7F2AC9C10118.9 (16)C28C27H27119.7F2C9C10119.5 (8)C27C28C29119.7 (8)F2AC9C8116.3 (16)C27C28-H28120.2F2C9C8115.9 (8)C29C28-H28120.2C10C9C8124.6 (7)C24C29C28120.5 (7)C9C10C11119.1 (6)C24C29-H29119.7C9C10H10120.4C30O3C30A44.6 (8)C10C11C6119.0 (5)C30A ¹ C30AO3111 (2)	C11—C6—C5	116.3 (5)	C24—C25—C26	120.5 (7)	
F1C7C6119.2 (6)C26C25H25119.8C8C7C6124.1 (6)C27C26C25119.8 (8)C9C8C7115.0 (6)C27C26H26120.1C9C8H8122.5C25C26H26120.1C7C8H8122.5C26C27C28120.6 (7)F2AC9F26 (2)C26C27H27119.7F2C9C10118.9 (16)C28C27H27119.7F2C9C10119.5 (8)C27C28C29119.7 (8)F2C9C8116.3 (16)C27C28H28120.2F2C9C8115.9 (8)C29C28H28120.2C10C9C8124.6 (7)C24C29C28120.5 (7)C9C10H10120.4C28C29H29119.7C9C10H10120.4C30O3C30A44.6 (8)C10C11C6119.0 (5)C30AiC30AO3111 (2)	F1—C7—C8	116.6 (6)	C24—C25—H25	119.8	
$C8-C7-C6$ 124.1 (6) $C27-C26-C25$ 119.8 (8) $C9-C8-C7$ 115.0 (6) $C27-C26-H26$ 120.1 $C9-C8-H8$ 122.5 $C25-C26-H26$ 120.1 $C7-C8-H8$ 122.5 $C26-C27-C28$ 120.6 (7) $F2A-C9-F2$ 6 (2) $C26-C27-H27$ 119.7 $F2A-C9-C10$ 118.9 (16) $C28-C27-H27$ 119.7 $F2-C9-C10$ 119.5 (8) $C27-C28-C29$ 119.7 (8) $F2A-C9-C8$ 116.3 (16) $C27-C28-H28$ 120.2 $F2-C9-C8$ 115.9 (8) $C29-C28-H28$ 120.2 $C10-C9-C8$ 124.6 (7) $C24-C29-C28$ 120.5 (7) $C9-C10-C11$ 119.1 (6) $C24-C29-H29$ 119.7 $C9-C10-H10$ 120.4 $C28-C29-H29$ 119.7 $C11-C10-H10$ 120.4 $C30-O3-C30A$ 44.6 (8) $C10-C11-C6$ 119.0 (5) $C30A^{-}-C30A-O3$ 111 (2)	F1—C7—C6	119.2 (6)	C26—C25—H25	119.8	
C9—C8—C7115.0 (6)C27—C26—H26120.1C9—C8—H8122.5C25—C26—H26120.1C7—C8—H8122.5C26—C27—C28120.6 (7)F2A—C9—F26 (2)C26—C27—H27119.7F2A—C9—C10118.9 (16)C28—C27—H27119.7F2—C9—C10119.5 (8)C27—C28—C29119.7 (8)F2A—C9—C8116.3 (16)C27—C28—H28120.2F2—C9—C8115.9 (8)C29—C28—H28120.2C10—C9—C8124.6 (7)C24—C29—C28120.5 (7)C9—C10—H10120.4C28—C29—H29119.7C11—C10—H10120.4C30—O3—C30A44.6 (8)C10—C11—C6119.0 (5)C30A ⁱ —C30A—O3111 (2)	C8—C7—C6	124.1 (6)	C27—C26—C25	119.8 (8)	
C9—C8—H8122.5C25—C26—H26120.1C7—C8—H8122.5C26—C27—C28120.6 (7)F2A—C9—F26 (2)C26—C27—H27119.7F2A—C9—C10118.9 (16)C28—C27—H27119.7F2—C9—C10119.5 (8)C27—C28—C29119.7 (8)F2A—C9—C8116.3 (16)C27—C28—H28120.2F2—C9—C8115.9 (8)C29—C28—H28120.2C10—C9—C8124.6 (7)C24—C29—C28120.5 (7)C9—C10—C11119.1 (6)C24—C29—H29119.7C9—C10—H10120.4C28—C29—H29119.7C11—C10—H10120.4C30—O3—C30A44.6 (8)C10—C11—C6119.0 (5)C30A ⁱ —C30A—O3111 (2)	C9—C8—C7	115.0 (6)	C27—C26—H26	120.1	
C7—C8—H8122.5C26—C27—C28120.6 (7)F2A—C9—F26 (2)C26—C27—H27119.7F2A—C9—C10118.9 (16)C28—C27—H27119.7F2—C9—C10119.5 (8)C27—C28—C29119.7 (8)F2A—C9—C8116.3 (16)C27—C28—H28120.2F2—C9—C8115.9 (8)C29—C28—H28120.2C10—C9—C8124.6 (7)C24—C29—C28120.5 (7)C9—C10—C11119.1 (6)C24—C29—H29119.7C9—C10—H10120.4C28—C29—H29119.7C11—C10—H10120.4C30—O3—C30A44.6 (8)C10—C11—C6119.0 (5)C30A ⁱ —C30A—O3111 (2)	С9—С8—Н8	122.5	C25—C26—H26	120.1	
F2AC9-F2 $6(2)$ $C26C27-H27$ 119.7 F2AC9C10 $118.9(16)$ $C28C27-H27$ 119.7 F2C9C10 $119.5(8)$ $C27C28C29$ $119.7(8)$ F2AC9C8 $116.3(16)$ $C27C28-H28$ 120.2 F2C9C8 $115.9(8)$ $C29C28-H28$ 120.2 C10C9C8 $124.6(7)$ $C24C29C28$ $120.5(7)$ C9C10C11 $119.1(6)$ $C24C29-H29$ 119.7 C9C10H10 120.4 $C28C29-H29$ 119.7 C11C10H10 120.4 $C30O3C30A$ $44.6(8)$ C10C11C6 $119.0(5)$ $C30A^{i}C30AO3$ $111(2)$	С7—С8—Н8	122.5	C26—C27—C28	120.6 (7)	
F2AC9C10118.9 (16)C28C27H27119.7F2C9C10119.5 (8)C27C28C29119.7 (8)F2AC9C8116.3 (16)C27C28H28120.2F2C9C8115.9 (8)C29C28H28120.2C10C9C8124.6 (7)C24C29C28120.5 (7)C9C10C11119.1 (6)C24C29H29119.7C9C10H10120.4C28C29H29119.7C11C10H10120.4C30O3C30A44.6 (8)C10C11C6119.0 (5)C30A ¹ C30AO3111 (2)	F2A—C9—F2	6 (2)	С26—С27—Н27	119.7	
F2-C9-C10119.5 (8)C27-C28-C29119.7 (8)F2A-C9-C8116.3 (16)C27-C28-H28120.2F2-C9-C8115.9 (8)C29-C28-H28120.2C10-C9-C8124.6 (7)C24-C29-C28120.5 (7)C9-C10-C11119.1 (6)C24-C29-H29119.7C9-C10-H10120.4C28-C29-H29119.7C11-C10-H10120.4C30-O3-C30A44.6 (8)C10-C11-C6119.0 (5)C30A ¹ -C30A-O3111 (2)	F2A—C9—C10	118.9 (16)	C28—C27—H27	119.7	
F2A-C9-C8116.3 (16)C27-C28-H28120.2F2-C9-C8115.9 (8)C29-C28-H28120.2C10-C9-C8124.6 (7)C24-C29-C28120.5 (7)C9-C10-C11119.1 (6)C24-C29-H29119.7C9-C10-H10120.4C28-C29-H29119.7C11-C10-H10120.4C30-O3-C30A44.6 (8)C10-C11-C6119.0 (5)C30A ⁱ -C30A-O3111 (2)	F2	119.5 (8)	C27—C28—C29	119.7 (8)	
F2C9C8115.9 (8)C29C28H28120.2C10C9C8124.6 (7)C24C29C28120.5 (7)C9C10C11119.1 (6)C24C29H29119.7C9C10H10120.4C28C29H29119.7C11C10H10120.4C30O3C30A44.6 (8)C10C11C6119.0 (5)C30A ⁱ C30AO3111 (2)	F2A—C9—C8	116.3 (16)	C27—C28—H28	120.2	
C10—C9—C8 124.6 (7) C24—C29—C28 120.5 (7) C9—C10—C11 119.1 (6) C24—C29—H29 119.7 C9—C10—H10 120.4 C28—C29—H29 119.7 C11—C10—H10 120.4 C30—O3—C30A 44.6 (8) C10—C11—C6 119.0 (5) C30A ⁱ —C30A—O3 111 (2)	F2—C9—C8	115.9 (8)	C29—C28—H28	120.2	
C9—C10—C11119.1 (6)C24—C29—H29119.7C9—C10—H10120.4C28—C29—H29119.7C11—C10—H10120.4C30—O3—C30A44.6 (8)C10—C11—C6119.0 (5)C30A ⁱ —C30A—O3111 (2)	C10—C9—C8	124.6 (7)	C24—C29—C28	120.5 (7)	
C9—C10—H10120.4C28—C29—H29119.7C11—C10—H10120.4C30—O3—C30A44.6 (8)C10—C11—C6119.0 (5)C30A ⁱ —C30A—O3111 (2)	C9—C10—C11	119.1 (6)	C24—C29—H29	119.7	
C11—C10—H10120.4C30—O3—C30A44.6 (8)C10—C11—C6119.0 (5)C30 A^i —C30A—O3111 (2)	С9—С10—Н10	120.4	C28—C29—H29	119.7	
C10—C11—C6 119.0 (5) C30 A^{i} —C30A—O3 111 (2)	C11—C10—H10	120.4	C30—O3—C30A	44.6 (8)	
	C10-C11-C6	119.0 (5)	C30A ⁱ —C30A—O3	111 (2)	
U_{22} —Ir1—N1—U1 -86.8 (5) U_{2} —Ir1—N1—U1 91.6 (5)	C22—Ir1—N1—C1	-86.8 (5)	O2—Ir1—N1—C1	91.6 (5)	

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
02—H2 <i>B</i> ···N3	0.85 (1)	2.54 (6)	3.029 (7)	117 (6)
O2—H2 <i>B</i> …O1	0.85 (1)	1.74 (3)	2.560 (6)	161 (7)
O2—H2A…N1	0.85 (1)	2.45 (6)	2.960 (6)	119 (6)
O2—H2A···O1 ⁱⁱ	0.85 (1)	1.97 (4)	2.700 (7)	142 (6)

Symmetry code: (ii) -x+1/2, -y+3/2, -z.